일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 파이썬
- 경사하강법
- 런던
- 결정트리
- 다항회귀
- Seaborn
- 코딩독학
- 코드잇TIL
- 코드잇
- 코드잇 TIL
- 데이터분석
- matplotlib
- 판다스
- 로지스틱회귀
- 영국석사
- HTML
- SQL
- sql연습문제
- 머신러닝
- 나혼자코딩
- 코딩공부
- 선형회귀
- 행렬
- 유학생
- for반복문
- 윈도우함수
- 코딩
- CSS
- 오늘도코드잇
- numpy
- Today
- Total
목록정규화 (2)
영국 척척석사 유학생 일기장👩🏻🎓
저번 글에서 설명하였듯이 복잡한 모델을 그대로 학습시키면 '과적합'이 됩니다. '정규화'라는 기법은 학습 과정에서 모델이 과적합되는 것을 예방해 줍니다. 1. 정규화 위와 같은 학습 데이터를 이용해서 다항 회귀를 하는 경우를 생각해봅시다. 모델이 과적합돼서 아래와 같은 복잡한 다항 함수가 나왔다고 해봅시다. 과적합된 함수는 보통 위아래로 엄청 왔다갔다 하는 특징이 있습니다. 많은 굴곡을 이용해서 함수가 training 데이터를 최대한 많이 통과하도록 하는 것입니다. 함수가 이렇게 급격하게 변화한다는 것은 함수의 계수, 즉 가설함수의 세타 값들이 굉장히 크다는 뜻입니다. 정규화는 모델을 학습시킬 때 세타 값들이 너무 커지는 것을 방지해 줍니다. 세타 값들이 너무 커지는 걸 방지하면 training 데이터에..
머신 러닝 모델이 정확한 예측을 못하는 경우가 많습니다. 이런 문제를 어떻게 해결하는지 알아보겠습니다. 1. 편향 사람의 키를 이용해서 몸무게를 예측하고 싶다고 해봅시다. 선형 회귀를 사용해서 training 데이터에서 위와 같은 관계라고 해봅시다. 위의 선이 과연 몸무게와 키의 관계를 잘 표현하고 있을까요? 뒤의 데이터를 살펴보면 어느 정도까지는 키가 늘어날 때 몸무게가 같이 늘어나지만, 일정 키 부터는 몸무게가 잘 안 늘어납니다. 따라서 아래와 같은 곡선이 데이터를 더 정확하게 표현합니다. 처음에 본 직선 모델의 문제는 모델이 너무 간단해서 아무리 학습을 해도 위와 같은 곡선 관계를 나타내지 못한다는 것입니다. 모델에 한계가 있는 것입니다. 모델이 너무 간단해서 데이터의 관계를 잘 학습하지 못하는 경..